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1 Introduction

AdS/CFT [1–3] allows a translation of many hard questions of quantum gravity to questions

in the dual CFT. Intriguing lessons on quantum gravity have taken the form of the stringy

exclusion principle [4]. Some aspects of this principle find a geometrical expression in

the properties of giant gravitons [5, 6]. The systematic study of the correlation functions

of gauge invariant multi-trace local operators in the half-BPS sector has been fruitful in

identifying CFT duals [7–9] of giant gravitons, strings attached to them [10–12] as well as

bulk geometries resulting from their back-reaction on space-time [13]. An important step

in these maps to spacetime is the identification of appropriate diagonal bases in the space

of multi-trace operators. For holomorphic operators constructed from a single complex

matrix, relevant to the half-BPS sector, this was solved in [8]. Recent generalizations

including non-holomorphic operators and multi-matrices have been achieved [14–16].

In [15] we solved the diagonalisation in the sector of holomorphic operators constructed

from M complex matrices transforming in the fundamental of U(M) (the case of M = 3

being of interest in N = 4 SYM). We gave covariant operators with correlators of the

simple form
〈

(ÔΛ,MΛ,i)IJ(Ô†Λ′,M ′
Λ′ ,i

′

)KL

〉

= δΛΛ′
δMΛM ′

Λ′

∑

σ∈Sn

DΛ
ii′(σ) (σ)KJ (σ−1)IL (1.1)

We will call this the canonical covariant form. Λ is the U(M) irreducible representation

and MΛ labels the state within this irrep. DΛ
ii′(σ) is the orthogonal matrix representation

of the Sn representation Λ. There is no spacetime dependence because we are considering a

4d analogue of the Zamolodchikov metric used in 2d CFT. We will often use the expression

‘two-point function’ interchangeably with this metric.

These covariant operators lead to gauge invariant operators with diagonal correlation

functions
〈

OΛ,MΛ,R,τO†Λ′,M ′
Λ′ ,R

′,τ ′
〉

∝ δΛΛ′
δMΛM ′

Λ′ δRR′
δττ ′

(1.2)

R is the U(N) representation which organises the multi-trace structure of the operator.

– 1 –
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In this paper we will explain how to get the canonical covariant form (1.1) for any global

symmetry group G. This will use Schur-Weyl duality which we review below. The diagonal

operators for the gauge invariant operators (1.2) follows automatically (see section 6).

Applied to N=4 SYM this means we solve the problem of writing down a basis for the

space of all gauge invariant operators in the theory (and in any subsector of the theory).

Operators are labelled by lowest weight representations of the global symmetry group and

diagonalise the free two-point correlation functions. We write these operators in terms

of appropriate Clebsch-Gordon coefficients and it should be noted that finding the CG

coefficients themselves is still a difficult problem in general, but we show how to do this in

the particular example of the SL(2) sector.

1.1 Schur-Weyl duality and G× Sn Clebsch decompositions

Let VF be the fundamental representation of U(M) (or GL(M)). Classical Schur-Weyl

duality gives the decomposition of V ⊗n
F in terms of irreducible representations of U(M).

It relies on the fact that in the algebra of linear operators acting V ⊗n
F , i.e. in End(V ⊗n

F ),

the maximal subalgebra which commutes with U(M) is exactly the group algebra of Sn.

It gives the decomposition of V ⊗n
F under U(M) ⊗ Sn :

V ⊗n
F =

⊕

Λ⊢n

V
U(M)
Λ ⊗ V Sn

Λ (1.3)

Here Λ ⊢ n denotes the fact that Λ runs over partitions of n, which correspond to Young di-

agrams with row lengths (r1, r2 · · · ) with ri ≥ ri+1. According to (1.3), V ⊗n
F has a complete

basis of states of the form |Λ,MΛ,mΛ〉, where MΛ label states in the irrep. of U(M) cor-

responding to the Young diagram Λ and mΛ label states in the irrep. of Sn corresponding

to the same Young diagram. For n > M , the above has to be qualified with the constraint

that c1(Λ) ≤M , i.e. the maximal length of the first column of the Young diagram is M .

Schur-Weyl duality is a special case of the double centraliser theorem (or double com-

mutant theorem) which gives a decomposition generalising (1.3) for any algebra acting on

a vector space W (for a brief statement of the key relevant facts see section 1 of [17] or text-

books such as [18]). The decomposition is given in terms of the algebra of interest A and

the commutant (centraliser) of its action in the vector space, often denoted as EndA(W).

Let G be the global symmetry group of a field theory. Let VF be a representation of G

formed by a set of fields in the theory. We will consider W = V ⊗n
F and the algebra of

interest is the universal enveloping algebra of the Lie algebra of G. Often G will be a

subgroup of the full symmetry group of a gauge theory. In the case of N = 4 SYM, if

we are interested in the six hermitian scalars (without space-time derivatives), VF is the

fundamental of SO(6). If we write the six hermitian scalars as three complex ones, and

only consider the holomorphic combinations, then the symmetry group of interest is U(3)

and VF is the fundamental 3-dimensional representation. This is the case we studied in [15]

and is covered by classical Schur-Weyl duality. In this paper one of the main examples

will involve G = SL(2) and VF will be an infinite dimensional discrete series representation

corresponding to a single scalar field X and its derivatives with respect to one light-cone

direction, ∂X, ∂2X, . . .. More generally we have fields Wm ∈ VF where m may run over an

– 2 –
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infinite dimensional vector space. In the SL(2) example we would have Wm = ∂mΦ. We

will then consider the n-field composites

Wm1 ⊗Wm2 ⊗ · · · ⊗Wmn (1.4)

which transform in the representation V ⊗n
F of G. This space also has an action of the

symmetry group Sn which permutes the n fields. This Sn action commutes with G, but

does not provide the full commutant of G. Equivalently there is a non-trivial commutant

algebra of G×Sn, denoted by Com(G×Sn). By the double-commutant theorem, this will

organise the multiplicities of G× Sn representations. We have

(V G
F )⊗n =

⊕

Λ,Λ1

V G
Λ ⊗ V Sn

Λ1
⊗ V

Com(G×Sn)
Λ,Λ1

(1.5)

where Λ is a representation of the global group G and Λ1 is a representation of Sn. VΛ,Λ1

gives the multiplicity with which Λ of G and Λ1 of Sn appear together. It is a representa-

tion of Com(G× Sn). The explicit form of Com(G× Sn) will not be needed in this paper,

with VΛ,Λ1 appearing simply as the carrier space of a multiplicity label. In diagonalising

the free-field two point functions, the decomposition of V ⊗n
F in terms of the group G× Sn

will be crucial.

The study of the multiplicity of the decomposition of n-fold tensor powers in terms of

G × Sn is called the plethysm problem. This is solved for SU(2) in [19] and is, for more

general G, the subject of a large mathematical literature. For developments on the use of

the combinatorics related to plethysms in the context of chiral rings of a large class of N = 1

SYM theories see [20]. For our purposes, we will be interested, not only in the multiplicities

of plethysms but also the corresponding Clebsch-Gordan coefficients. Using these we will

obtain explicit gauge invariant operators which diagonalize the Zamolodchikov metric.

1.2 Outline of paper and main results

In section 2 we will find the canonical covariant form for the SL(2) sector. In particular

we will have in mind derivatives acting on one complex scalar X. In section 3, we will

give explicit formulae for the SL(2) × Sn multiplicities involved. We will be heavily using

the oscillator construction of SL(2). In section 4, we show, for any global symmetry G

and for n-field composites with the basic fields transforming in any representation V of G,

that the covariant canonical form follows once we construct n-field composites using the

Clebsch-Gordan coefficients for the G × Sn decomposition of V ⊗n. In section 5 we give

various examples of this general case explaining how the diagonalisations in the U(M) and

SL(2) sectors follow this general pattern, and how the canonical covariant corresponding to

representations of the higher spin group HS(1, 1) are also included. We describe some use-

ful facts concerning SO(6)×Sn multiplicities relevant to the SO(6) sector of six hermitian

scalars and finally we show how to apply the construction of section 4 to the case where

where G is of the product form G1 × G2. In section 6 we review how to get the diagonal

gauge-invariant operators from the canonical covariant form and show the compatibility

of the counting with matrix model methods of [21]. Section 7 shows how our results on

– 3 –
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the SL(2) sector can be used to provide the gauge theory operators dual to the worldvol-

ume excitations of giants considered in [22]. The one-loop mixing of the gauge-invariant

operators constructed in section 6 for N = 4 is analysed in section 8.

2 SL(2) sector: covariant operators

We consider the SL(2) sector which we can view as a reduction of N = 4 SYM to a sector

with a single light-cone derivative of the complex scalar X. We choose ∂ ≡ (∂0 + ∂3)/2.

We find the basic two-point function

〈

∂k1X†i
j(x) ∂

k2Xk
l (0)

〉

=
(−1)k1(k1 + k2 + 1)!

x2+k1+k2
δi
l δ

k
j (2.1)

If we consider N = 4 SYM on R4, we take our two operators to zero and infinity

(corresponding to opposite poles of the conformally equivalent S4) we have

〈

∂k1X†′i
j(x

′ = 0) ∂k2Xk
l (x = 0)

〉

= δk1k2(k1!)
2 δi

l δ
k
j (2.2)

where x′ = x/x2 is the coordinate patch around the north pole and x around the south.

This technique is well known from the studies of conformal field theories in two dimensions

and the above is known as the Zamolodchikov metric (see [23, 24] for a general account

and [25] for applications to N = 4 SYM). Note that this metric on operators is defined using

space-time dependent two-point functions but is itself independent of spacetime. Knowing

the metric for arbitrary derivatives allows a reconstruction of the spacetime dependence.

2.1 Oscillator construction

The oscillator representation allows an elegant method of constructing primary fields in the

SL(2) sector [26, 27]. By using this representation to find the Clebsch-Gordan coefficients

associated with the SL(2)×Sn, we will solve the problem of finding the canonical covariant

2-point functions. It will turn out that in addition to the groups SL(2) and Sn another

symmetric group will play an interesting role. It is Sk where k is the number of derivatives

required to construct the lowest weight state.

The SO(4, 2) conformal algebra is given by

[Mab, Pc] =ηbcPa − ηacPb, [Mab,Kc] = ηbcKa − ηacKb , (2.3)

[Mab,Mcd] =ηbcMad − ηacMbd + ηadMbc − ηbdMac , (2.4)

[D,Pa] = Pa , [D,Ka] = −Ka, [Ka, Pb] = 2ηabD − 2Mab (2.5)

The SL(2) sector in terms of the conformal generators can be chosen as

L+ =
1

2
(P0 + P3) L− =

1

2
(K0 −K3) L0 =

1

2
(D −M03) (2.6)

giving

[L−, L+] = 2L0 , [L0, L±] = ±L± (2.7)

– 4 –
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This algebra may be represented using oscillators as

L+ = a† + a†a†a , L0 =
1

2
+ a†a , L− = a (2.8)

where [a, a†] = 1. The lowest weight state of the representation VF is denoted |0〉 and is

annihilated by all the lowering oscillators L− = a. It can straightforwardly be checked that

the raising operators L+ then act on the lowest weight state as

(L+)k |0〉 = k! (a†)k |0〉 ↔ ∂k X |0〉 (2.9)

By the operator-state correspondence, the operator on the r.h.s. above acts on the CFT

vacuum at the origin in radial quantization to give a state. Hence we have a map from

oscillator states used in the representation theory of SL(2) to states in radial quantization.

Dual states in the oscillator Hilbert space map to states at the dual vacuum (at infinity)

in radial quantization.

〈0|Lk
− = 〈0|ak ↔ 〈0| ∂k X (2.10)

Note that the usual oscillator inner product correctly maps to the inner product given by the

Zamolodchikov metric (2.2). The normalization in (2.2) is easily calculated using the SL(2)

algebra once we use the fact that L− is the hermitian conjugate of L+ in radial quantization.

In a similar way we can represent the tensor product V ⊗n
F by considering n independent

oscillators ai. In this space the action of the diagonal SL(2) is obtained by summing over n:

L+ =
∑

i

(a†i + a†ia
†
iai) , L0 =

1

2
n+

∑

i

a†iai , L− =
∑

i

ai (2.11)

The relation between the oscillator states and the field states is:

n
∏

l=1

(a†l )
kl |0〉 ↔

1

k1!k2! . . . kn!
∂k1X ⊗ ∂k2X ⊗ · · · ⊗ ∂knX |0〉 (2.12)

The lowest weights are annihilated by L− =
∑

i ai. All the lowest weight states at level

L0 = n+k are generated by k-oscillator states obtained as products of (a†i−a
†
j) acting on the

vacuum. The simplest example is at n = 2 where the lowest weight states are all of the form

Ok = (a†1 − a†2)
k|0〉 (2.13)

Expanding out the oscillators and using (2.12) we find the corresponding operators in

field space

Ok ∼
k

∑

j=0

(

k

j

)2

(−1)k−j ∂jX ⊗ ∂k−jX (2.14)

These are conformal higher spin currents, first constructed in [28].

– 5 –
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2.2 Action of Sn on Aa

The lowest weight states are clearly generated by the n−1 differences of oscillators a†i −a
†
j .

The following basis will be very useful

A†
a =

n
∑

i=1

Ja
ia†i (2.15)

where Ja
i takes us from the natural representation of Sn on n objects (labelled by the

index i) to the n−1 dimensional H = [n−1, 1] representation for which we will choose the

orthonormal basis (labelled by the index a).1 The matrix J will thus have the following

properties

DH
ab(σ)Jb

i = Ja
σ(i) (2.16)

Ja
i(J†)b

i = δab (2.17)

with DH
ab(σ) the orthonormal representation. Explicitly we find

A†
a =

1
√

a(a+ 1)

(

a†1 + . . . a†a − aa†a+1

)

(2.18)

The details of the Sn action on A†
a, and its relation to the orthogonal representing matrix

of the hook representation DH
ab(σ), are given in appendix section B.

2.3 Canonical covariant form using oscillators

The simplest operator in the space V ⊗n
F is given by n scalar fields without derivatives

(On)i1i2···in
j1j2···jn

= Xi1
j1

⊗Xi2
j2
⊗ · · · ⊗Xin

jn
(2.19)

The scalar fields lie in the adjoint representation of the gauge group U(N). Using multi-

indices I = (i1, i2 · · · in) and J = (j1, j2 · · · jn) we can write

(On)IJ = (X ⊗X ⊗ · · ·X)IJ ≡ XI
J (2.20)

There is a map which takes the states in the oscillator construction of the V ⊗n
F representa-

tion of SL(2) to operators or states (by the operator-state correspondence) in the CFT. The

vacuum of the oscillator construction maps to XI
J |0〉. Denoting the map from oscillator

Hilbert space to the CFT states as ρI
J we may write

ρI
J(|0〉) ↔ XI

J |0〉 ≡ |XI
J 〉 (2.21)

The vacuum on the right can be viewed as the vacuum in the CFT associated with the

origin in radial quantization. The dual oscillator vacuum maps to the dual vacuum at

infinity in radial quantization.

ρI
J(〈0|) ↔ 〈0|X†I

J ≡ 〈XI
J | (2.22)

1The natural representation of Sn on n objects is a reducible representation and decomposes into the

n − 1 dimensional rep H = [n − 1, 1] and the 1-dimensional symmetric rep [n]. We consider the map from

ai onto the symmetric representation in section 2.4 where we see that they correspond to the application

of the SL(2) descendant operator.

– 6 –
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The correlation function of these operators is

〈XI
J |X

K
L 〉 =

∑

σ∈Sn

σI
L(σ−1)KJ (2.23)

Now the operator corresponding to a†i |0〉 has n − 1 scalar fields X with one derivative of

a scalar field ∂X sitting at position i. Summing over Wick contractions and using the

orthogonality in (2.2) gives the following correlation function

ρI
J

(

〈0|ai

)

ρK
L

(

a†j |0〉
)

=
∑

σ∈Sn

δiσ(j)σ
I
L(σ−1)KJ (2.24)

Here one only sums over permutations σ which map position j to i, enforced by the delta

function. This in turn leads to the correlation function for k oscillators (k derivatives):

ρI
J

(

〈0|ai1ai2 . . . aik |
)

ρK
L

(

a†j1a
†
j2
. . . a†jk

|0〉
)

=
∑

ρ∈Sk

∑

σ∈Sn

δi1σ(jρ(1)) . . . δikσ(jρ(k))σ
I
L(σ−1)KJ (2.25)

We wish to rewrite this in terms of the lowest weight states ρK
L

(

A†
a1A

†
a2 . . . A

†
ak
|0〉

)

. The

correlation function of these states is then

ρI
J

(

〈0|(Aa1Aa2 . . . Aak
) ρK

L

(

A†
b1
A†

b2
. . . A†

bk
|0〉

)

=
∑

ρ∈Sk

∑

σ∈Sn

J
σ(jρ(1))
a1 . . . J

σ(jρ(k))
ak

(J†)j1b1 . . . (J
†)jk

bk
σI

L(σ−1)KJ

=
∑

ρ∈Sk

∑

σ∈Sn

DH
a1c1

(σ) . . . DH
akck

(σ)J
jρ(1)
c1 . . . J

jρ(k)
ck

(J†)j1b1 . . . (J
†)jk

bk
σI

L(σ−1)KJ

=
∑

ρ∈Sk

∑

σ∈Sn

DH
aρ(1)b1

(σ) . . . DH
aρ(k)bk

(σ) σI
L(σ−1)KJ (2.26)

Now notice that A†
a1A

†
a2 . . . A

†
ak

is totally symmetric in the ai indices and thus lies in the

totally symmetric tensor product Sym(V ⊗k
H ). Equivalently this is the projection in

V ⊗k
H =

⊕

Λ1,Λ2

V
(Sn)
Λ1

⊗ V
(Sk)
Λ2

⊗ VΛ1,Λ2 (2.27)

to Λ2 = [k]. We can consider the corresponding Clebsch-Gordon coefficients to the irre-

ducible representation Λ1.

C
Λ1,[k],mΛ1

;τ
a1...ak

(2.28)

The index τ runs through the multiplicity of the irrep. Λ1 ⊗ [k] of Sn × Sk in V ⊗k
H which

is the dimension of VΛ,[k] . Equivalently, this is the multiplicity of Λ1 of Sn in Sym(V ⊗k
H ).

Formulae for the multiplicities are given in section 3. The Clebsch-Gordan coefficients are

explained in appendix section A.

The CG coefficients have the following properties. Firstly

C
Λ1,[k],mΛ1

;τ
a1...ak

= C
Λ1,[k],mΛ1

;τ
aρ(1)...aρ(k)

∀ρ ∈ Sk (2.29)

– 7 –
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which simply reflects the fact that the CG coefficient couples to the symmetric product

Sym(V ⊗k
H ). Secondly

C
Λ1,[k],mΛ1

;τ
a1...ak

DH
a1b1

(σ) . . . DH
akbk

(σ) = DΛ1

mΛ1
m′

Λ1

(σ)C
Λ1,[k],m′

Λ1
;τ

b1...bk
(2.30)

which is derived in (A.15). Finally orthogonality:

C
Λ1,[k],mΛ1

;τ
a1...ak

(C†)
Λ′

1,[k],m′
Λ′
1
;τ ′

a1...ak
= δΛ1Λ′

1
δmΛ1

m′
Λ1
δττ ′ (2.31)

Now define new operators transforming in the irreps. of Sn

(

On,k;Λ1,mΛ1
;τ

)I

J
= C

Λ1,[k],mΛ1
;τ

a1...ak
ρI

J

(

A†
a1
. . . A†

ak
|0〉

)

(2.32)

Using the properties of the Clebsch-Gordon coefficients we show that the operators

On,k;Λ1,mΛ1
;τΛ have the following correlation function

〈

(

On,k;Λ1,mΛ1
;τ

)I

J

(

O†n
′,k′;Λ′

1,m′
Λ′
1
;τ ′

)K

L

〉

= δnn′
δkk′

C
Λ1,[k],mΛ1

;τ
a1...ak

(C†)
Λ′

1,[k],m′
Λ′
1
;τ ′

b1...bk

×
∑

ρ∈Sk

∑

σ∈Sn

DH
aρ(1)b1

(σ) . . . DH
aρ(k)bk

(σ) σI
L(σ−1)KJ

= δnn′
δkk′

k! C
Λ1,[k],m̂Λ1

;τ

b1...bk
(C†)

Λ′
1,[k],m′

Λ′
1
;τ ′

b1...bk

∑

σ∈Sn

DΛ1
mΛ1

m̂Λ1
(σ) σI

L(σ−1)KJ

= δnn′
δkk′

δΛ1Λ′
1δττ ′

k!
∑

σ∈Sn

DΛ1

mΛ1
m′

Λ1

(σ) σI
L(σ−1)KJ (2.33)

2.4 Descendants

We have a raising operator L+ (see equation (2.11)) corresponding to a space-time deriva-

tive. Acting on the lowest weight state we obtain the descendant operator

OΛ=n+k,MΛ;Λ1,mΛ1
;τ = (L+)MΛ C

Λ1,[k],mΛ1
;τ

a1...ak
A†

a1
. . . A†

ak

∣

∣XI
J

〉

(2.34)

We then find the expected canonical form, using the commutator relations in section 2.1.

〈

OΛ=n+k,MΛ;Λ1,mΛ1
;τ (O†)

Λ′=n′+k′,M ′
Λ′ ;Λ

′
1,m′

Λ′
1
;τ ′

〉

= δnn′
δkk′

δMΛM ′
Λ′ δΛ1Λ′

1δττ ′
(MΛ!)2 k!

∑

σ∈Sn

DΛ1

mΛ1
m′

Λ1

(σ) σI
L(σ−1)KJ (2.35)

3 Multiplicities of SL(2) × Sn irreps. in V
⊗n

F

In this section we give formulae for the multiplicities of the operators found in (2.32) using

characters.
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3.1 Multiplicity of SL(2) irreps.

We begin by considering the multiplicities of SL(2) irreps in V ⊗n
F which includes a sum

over Sn irreps. The states ∂lX in VF have weights L0 = 1 + l, with l going up to infinity.

They form a lowest weight discrete series irrep V1 = VF . Similar discrete series irreps exist

for any k, i.e. Vk. We wish to find the tensor product decomposition of V ⊗n
1 in terms of

the irreps. Vk. This can be derived by characters. The character of the irrep. Vk is

χk(q) := TrVk
(qL0) = qk

∞
∑

l=0

ql =
qk

(1 − q)
(3.1)

For the tensor product V ⊗n
1 we get the character

(χ1(q))
n =

qn

(1 − q)

1

(1 − q)n−1

=
qn

(1 − q)

∑

k≥0

(n− 2 + k)!

k!(n − 2)!
qk

=
∑

k≥0

χn+k(q) m(k, n) (3.2)

where we have defined

m(k, n) =
(n− 2 + k)!

k!(n − 2)!
(3.3)

We thus have the decomposition of V ⊗n
F as:

V ⊗n
F =

⊕

k≥0

m(k, n) Vn+k (3.4)

We have seen in the previous section that the multiplicity m(k, n) is generated by k

powers of the oscillators A†
a. They transform in the H = [n−1, 1] representation of Sn with

dimension (n − 1). The k-oscillator states transform in the symmetrised tensor product

of the hook representation which does indeed have dimension m(k, n). The multiplicity

m(k, n) can be decomposed into irreps of Sn by finding the decomposition of Sym(V ⊗k
H )

into irreps of Sn. We can therefore write

V ⊗n
1 =

⊕

k

VΛ=n+k ⊗ Sym(V ⊗k
H )

=
⊕

k

V
SL(2)
Λ=n+k ⊗ V Sn

Λ1
⊗ V

Com(SL(2)×Sn)
Λ,Λ1

(3.5)

Here the integer k runs from 0 to infinity and Com(SL(2)×Sn) is the commutant of SL(2)×

Sn. Now if we act with a projector PΛ1 =
dΛ1
n!

∑

σ χΛ1(σ)σ on V ⊗n
1 we will project out

the subspace with a fixed Λ1. Taking the SL(2) character in this Λ1-symmetrised subspace

and expanding in terms of the characters of Vp will yield the dimensions of the multiplicity

spaces V
Com(SL(2)×Sn)
Λ,Λ1

. This provides a way to solve the problem of decomposing Sym(V ⊗k
H )

into irreps of Sn. We consider this problem in the next section.
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3.2 Multiplicities of SL(2) × Sn and q-deformed GL(∞)

3.2.1 Examples of symmetric and antisymmetric Sn irreps

As an example of this method, take Λ1 = [n] the symmetric irrep. We want to calculate

trWPΛ1q
L0 where the trace is taken over W = V ⊗n

1 . This means calculating qL0 in the

symmetrised subspace of V ⊗n
1 . A basis in the symmetrised subspace of |m1,m2, ..,mn〉 is

in 1 − 1 correspondence with natural numbers m1,m2, . . . mn obeying

0 ≤ m1 ≤ m2 ≤ · · ·mn ≤ ∞ (3.6)

So the character is

trWP[n]q
L0 = qn

∞
∑

mn=0

mn
∑

mn−1=0

· · ·
m3
∑

m2=0

m2
∑

m1=0

qm1+m2+···+mn

= qn
n

∏

i=1

1

(1 − qi)

=
qn

(1 − q)

n
∏

i=2

1

(1 − qi)
(3.7)

The multiplicity of V
SL(2)
Λ=n+k ⊗ V

(Sn)
[n] is then the coefficient of qk in the generating

function

n
∏

i=2

1

(1 − qi)
(3.8)

As an example for n = 2, the multiplicity of V2+k is the coefficient of qk in 1
1−q2 . This tells

us that the symmetric irrep. of Sn only appears for k = 0, 2, 4, . . . with unit multiplicity.

Similarly, for R = [1n] we apply the antisymmetric projector to W we have a basis in

correspondence with (m1,m2, . . . ,mn) with m1 < m2 < · · · < mn. So the character is

trW(P[1n]q
L0) = qn

∞
∑

mn=n−1

mn−1−1
∑

mn−1=n−2

· · ·
m3−1
∑

m2=1

m2−1
∑

m1=0

qm1+m2+···+mn

= qnq
n(n−1)

2

n
∏

i=1

1

1 − qi

=
qn

1 − q
q

n(n−1)
2

n
∏

i=2

1

1 − qi
(3.9)

So the number of antisymmetric [1n] irreps. of Sn in the multiplicity space of Vn+k is the

coefficient of qk in

q
n(n−1)

2

(1 − q2) · · · (1 − qn)
(3.10)

This multiplicity is zero unless k ≥ n(n−1)
2 . This is as it should be because the antisymmetry

condition means that we need X,∂X, . . . ∂n−1X which has weight n+ n(n−1)
2 .
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3.2.2 The generating function for any SL(2) × Sn irreps

In fact it turns out we can write down a compact formula for the generating function for

the multiplicities of VΛ=n+k ⊗ VΛ1 in W for any Λ1. It is given by

(1 − q)q
P

i=1
ci(ci−1)

2

∏

b

1

(1 − qhb)
(3.11)

The product runs over the boxes of the Young diagram of Λ1 and hb is the hook length

of the box. ci is the column length of the i’th column. One can check that this agrees

with (3.8) and (3.10) for R = [n] and R = [1n].

The proof of this generating function, using q-dimensions of GL(∞), goes as follows.

3.2.3 Proof using q-dimensions of GL(∞)

It is useful to think of the infinite dimensional representation VF as a limit of finite di-

mensional representations VÑ of GL(Ñ ) for Ñ → ∞. This corresponds to considering

fundamental fields of the form ∂kX for 0 ≤ k ≤ Ñ − 1. States in V ⊗n
F = V ⊗n

Ñ
of a fixed Sn

symmetry given by Young diagram Λ1, can be labelled by inserting n positive integers from

1 · · · Ñ into the Young diagram, with the numbers strictly decreasing down the columns

and weakly increasing along the rows. These are the semi-standard Young tableaux [29].

We will denote by ~m(R) a set of numbers corresponding to a semi-standard Young tableau.

This corresponds to operators consisting of the letters ∂m1−1X, . . . , ∂mn−1X. So we have

trWPΛ1q
L0 =

∑

~m(R)

qm1+m2+···mn (3.12)

In a standard basis of GL(Ñ ), with ei being the column vector with 1 in the i’th place and

0 elsewhere, the diagonal matrices Eii act as

Eiiem = δimem (3.13)

The weight qm can be identified with the eigenvalues of q
P

m mEmm . Precisely this generator

appears in the computation of the q-dimension of the representation Λ1 of Uq(GL(Ñ )). This

sum also appears in studying the decomposition of V ⊗n
j for the SU(2) representation Vj

(2j + 1 = Ñ) in terms of SU(2) × Sn [19]. It is known to be

qn+
P

i
ci(ci−1)

2

∏

i,j

(1 − qÑ−i+j)

1 − qh(i,j)
(3.14)

where i runs along the columns, j runs along the rows of the Young diagram, and h(i, j)

is the hook length of the box labelled by (i, j). When Ñ → ∞ in a region of q < 1 ( where

the desired sums converge), the numerator goes to 1 and we get the result

trWPΛ1q
L0 = qn+

P

i

ci(ci−1)

2

∏

i,j

1

1 − qh(i,j)
(3.15)

Factoring out the character of VΛ=n+k which is qn+k

(1−q) we get the multiplicity of this repre-

sentation. This proves the claim that the coefficient of qk in (3.11) is the multiplicity of

the representation VΛ=n+k in W.
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3.3 The general case using characters of symmetric groups Sn × Sk

As we explained in section 3.1, the oscillator construction of SL(2) representations implies

that the multiplicity of the SL(2)×Sn representation VΛ=n+k⊗VΛ1 in the decomposition of

V ⊗n
1 is given by the multiplicity of VΛ1 of Sn in Sym(V ⊗k

H ). Equivalently this is the multi-

plicity of the representation Λ1⊗[k] of Sn×Sk in V ⊗k
H , where [k] denotes the Young diagram

of Sk with a single row of length k which is the symmetric representation. The projectors

PΛ1 ⊗ P[k] can be written down using characters of symmetric groups. Hence we have

dΛ=n+k,Λ1 = trVH
(PΛ1 ⊗ P[k])

=
1

n!

∑

σ∈Sn

χΛ1(σ)
1

k!

∑

τ∈Sk

χ[k](τ)
∏

i

(trVH
(σi))ci(τ) (3.16)

ci(τ) is the number of cycles in τ of length i. See appendix section A.1 for further details.

We can check that this multiplicity gives the correct m(k, n)

m(k, n) =
∑

Λ1(Sn)

dΛ1dΛ=n+k,Λ1

=
∑

σ∈Sn

∑

Λ1(Sn)

1

n!
dΛ1χΛ1(σ)

1

k!

∑

τ∈Sk

∏

i

(trVH
(σi))ci(τ)

=
1

k!

∑

τ∈Sk

(trVH
(id))

P

i ci(τ)

= dimn−1[k]

=
(n− 2 + k)!

k!(n − 2)!
(3.17)

We have identified m(k, n) with the dimension of the totally symmetric GL(n − 1) repre-

sentation [k].

4 General G, V

We now consider how the derivation of the canonical covariant form, such as (2.33) in the

SL(2) case, generalises to the situation of any global symmetry group G. The Lie algebra

generators act on n-fold tensor products of representations V1 ⊗ V2 · · · ⊗ Vn as

∆n(Ja) = Ja ⊗ 1 ⊗ · · · ⊗ 1 + 1 ⊗ Ja ⊗ · · · ⊗ 1 + . . . + 1 ⊗ · · · ⊗ Ja (4.1)

In particular we will be interested in the n-fold tensor product of the representation VF

corresponding to the fundamental fields in (a sector of) the theory. Note that the action

of G commutes with the symmetric group action permuting the n factors in the tensor

product. For any σ ∈ Sn we have in End(V ⊗n
F )

σ ∆n(Ja) = ∆n(Ja) σ (4.2)

The signs that arise in the super-algebra case will be discussed in section 4.1.1, where we

will show that the key result generalizes.
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We will now organise the states in V ⊗n
F according to the representations of the product

group G× Sn acting on this space

(V G
F )⊗n = ⊕Λ,Λ1V

G
Λ ⊗ V Sn

Λ1
⊗ V

Com(G×Sn)
Λ,Λ1

(4.3)

The n-fold tensor product has states

|m1,m2, . . . ,mn〉 (4.4)

where m runs over the states in the fundamental representation (which can be infinite

dimensional as in the SL(2) case). We can choose an orthonormal basis

〈m1,m2, . . .mn|m
′
1,m

′
2, . . . ,m

′
n〉 = δm1m′

1
· · · δmnm′

n
(4.5)

We can decompose the n-fold tensor product into irreps of the global symmetry as

follows

|m1, . . . ,mn〉 =
∑

Λ,MΛ,i

CΛ,MΛ,i
~m

|Λ,MΛ, i〉 (4.6)

MΛ is the state within VΛ and i is a multiplicity index for VΛ. In fact V ⊗n has an action

of G × Sn so we can decompose the above multiplicity index i into (Λ1,mΛ1 , τ) where

Λ1 labels an Sn irrep, mΛ1 runs over the states in the irrep Λ1 of Sn and τ labels the

multiplicity of VΛ ⊗ VΛ1. We define the Clebsch for this decomposition

C
Λ,MΛ,Λ1,mΛ1

,τ

~m
= 〈Λ,MΛ,Λ1,mΛ1 , τ |~m〉 (4.7)

The Clebsch are invertible

|Λ,MΛ,Λ1,mΛ1 , τ〉 =
∑

~m

C ~m
Λ,MΛ,Λ1,mΛ1

,τ |~m〉 (4.8)

so that

C ~m
Λ,MΛ,Λ1,mΛ1

,τ = 〈~m|Λ,MΛ,Λ1,mΛ1 , τ〉 (4.9)

Using the hermiticity of the inner product

C ~m
Λ,MΛ,Λ1,mΛ1

,τ =
(

C
Λ,MΛ,Λ1,mΛ1

,τ

~m

)∗

(4.10)

We can always choose an orthonormal basis

〈Λ,MΛ,Λ1,mΛ1 , τ |Λ
′,M ′

Λ′ ,Λ′
1,m

′
Λ′

1
, τ ′〉 = δΛΛ′δMΛM ′

Λ′
δΛ1Λ′

1
δmΛ1

m′
Λ′
1

δττ ′ (4.11)

which leads to orthogonality of the Clebsch

∑

~m

(

C
Λ,MΛ,Λ1,mΛ1

,τ

~m

)∗

C
Λ′,M ′

Λ′ ,Λ
′
1,m′

Λ′
1
,τ ′

~m = δΛΛ′δMΛM ′
Λ′
δΛ1Λ′

1
δmΛ1

m′
Λ′
1

δττ ′ (4.12)
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4.1 Correlators in free field theory

Corresponding to the orthogonal states in VF we have fields Wm which diagonalize the

Zamolodchikov metric

〈WmWm′〉 = δmm′ (4.13)

For the states in V ⊗n
F take operators Om1,m2,...mn ≡ O~m = Wm1 ⊗Wm2 · · ·Wmn . In the

case of SL(2) this is

1

m1!m2! · · ·mn!
∂m1X ⊗ ∂m2X · · · ⊗ ∂mnX (4.14)

The 2-point function can be written as

〈( O†
m1,m2,...mn

)IJ , ( Om′
1,m′

2···m
′
n

)KL 〉 =
∑

σ∈Sn

n
∏

i=1

δmim
′
σ(i)

(σ)KJ (σ−1)IL (4.15)

where the sum over σ runs over Wick contractions and we have used the orthogonal-

ity (4.13). Define operators in correspondence with the orthonormal G × Sn basis of

the V ⊗n:

OΛ,MΛ,Λ1,mΛ1
,τ =

∑

~m

C ~m
Λ,MΛ,Λ1,mΛ1

,τOm1,...,mn (4.16)

The correlator of the gauge-covariant operators is

〈(O†
Λ,MΛ,Λ1,mΛ1

,τ )
I
J (OΛ′,M ′

Λ′ ,Λ
′
1,m′

Λ′
1
,τ ′)KL 〉

=
∑

~m,~m′

(

Cm1···mn

Λ,MΛ,Λ1,mΛ1
,τ

)∗

C
m′

1···m
′
n

Λ′,M ′
Λ′ ,Λ

′
1,m′

Λ′
1
,τ ′

∑

σ∈Sn

n
∏

i=1

δmim
′
σ(i)

(σ)KJ (σ−1)IL (4.17)

Solve the delta function

〈(O†
Λ,MΛ,Λ1,mΛ1

,τ )
I
J (OΛ′,M ′

Λ′ ,Λ
′
1,m′

Λ′
1
,τ ′)KL 〉

=
∑

σ∈Sn

∑

~m

(

Cm1···mn

Λ,MΛ,Λ1,mΛ1
,τ

)∗

C
m

σ−1(1)···mσ−1(n)

Λ′,M ′
Λ′ ,Λ

′
1,m′

Λ′
1
,τ ′ (σ)KJ (σ−1)IL (4.18)

We can simplify the σ−1 action on V ⊗n
F in the second Clebsch because we know it trans-

forms under the Sn representation Λ′
1: the action is just the matrix representation of Λ′

1.

C
m

σ−1(1)···mσ−1(n)

Λ′,M ′
Λ′ ,Λ

′
1,m′

Λ′
1
,τ ′ = D

Λ′
1

m′
Λ′
1
m̂Λ′

1

(σ−1) Cm1···mn

Λ′,M ′
Λ′ ,Λ

′
1,m̂Λ′

1
,τ ′ (4.19)

Use this and the orthogonality of the Clebsch from equation (4.12) to get

〈(O†
Λ,MΛ,Λ1,mΛ1

,τ )
I
J (OΛ′,M ′

Λ′ ,Λ
′
1,m′

Λ′
1
,τ ′)KL 〉

= δΛΛ′δMΛM ′
Λ′
δΛ1Λ′

1
δττ ′

∑

σ∈Sn

DΛ1

mΛ1
m′

Λ′
1

(σ) (σ)KJ (σ−1)IL (4.20)
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4.1.1 Signs in the super-algebra case

In the case where the generators of G include fermionic ones, there is a small modification

of the above proof. Fermionic generators Q pick up signs when taken past fermionic fields

Q(ψ1ψ2) = (Qψ1)ψ2 − ψ1(Qψ2) (4.21)

In this case the action of permutations is defined with a sign for each fermion swap. For

the transposition of ψ1ψ2 we define

s(ψ1ψ2) = −ψ2ψ1 (4.22)

It is easy to check that Qs = sQ. This is the key point. If we define the action of permu-

tations to pick up a sign for every swap of fermions, we have an action of the permutation

group which commutes with the super-algebra. Hence Clebsch-Gordan coefficients for G×

Sn are well-defined, and we can define operators according to (4.16). The two-point function

in this case picks up a sign (−1)ǫ(~m,σ) on the r.h.s. of (4.17). This sign carries into (4.18).

Because the correct action of the permutations involves this same sign factor, equa-

tion (4.19) has the sign (−1)ǫ(~m,σ) on the left. The final result (4.20) remains unchanged.

4.2 Completeness

The completeness of these operators in V ⊗n
F follows from the invertibility of the Clebschs;

this means that any state in V ⊗n
F can be written as a linear combination of states in VΛ⊗VΛ1.

Om1,...mn =
∑

Λ,MΛ,Λ1,mΛ1
,τ

C
Λ,MΛ,Λ1,mΛ1

,τ

~m
OΛ,MΛ,Λ1,mΛ1

,τ (4.23)

If we reintroduce the gauge indices and trace our covariant operators to get gauge-

invariant operators, then we must also take into account finite N constraints. This is

studied in section 6.

5 Examples and applications

The above formalism can be applied to any global symmetry G of a theory, or to a subgroup

of the global symmetry acting on a sector of the fields. In this section we will consider

a number of examples to which we can apply this formalism. Examples relating to N=4

SYM are the SL(2) sector described above and the U(M) (BPS) sector considered in [15].

We will review both of these sectors from the new perspective of the previous section. Free

conformal field theories also possess an enlarged symmetry group known as higher spin

symmetry and we will also see in this section how our construction naturally assembles

into representations of this.

Another sector we will consider corresponds to the 6 hermitian scalars of N = 4

SYM and the SO(6) subgroup of the global symmetry acting on them. The problem of

diagonalising the gauge invariant operators amounts to first finding a manageable form

of the Clebsch-Gordan coefficients for the SO(6) × Sn decomposition of the n-fold tensor
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product of the fundamental of SO(6). We will not solve this problem explicitly but will note

some facts about the relevant multiplicities in section 5.4. A more explicit description of

the Clebsch-Gordans analogous to what we gave for U(M) in section 5.2 would be desirable.

The sector of six scalars can also be described in terms of the 3 complex scalars and

their conjugates. In this case, it is natural to use the U(3) subgroup of SO(6). The case

of purely holomorphic operators was solved in [15] and is reviewed in 5.2. It should be

possible to include the anti-holomorphic operators by using U(3) along with the Brauer

algebra BN (m,n) used in [14] for the case of a single complex scalar.

Finally we will look at the formalism applied to product groups. To handle a class

of derivatives of the holomorphic scalars we can use the product group technology applied

to SL(2) × U(3). A simple sector including one chiral fermion, 3 holomorphic scalars is

controlled by SL(2)× U(3|1). For the six hermitian scalars and a class of their derivatives

we can use SL(2)×SO(6). For more general derivatives we can use SO(4, 2)×SO(6). For the

sixteenth BPS sector we would use SU(3|2, 1) [34].For the complete set of fields of N = 4

SYM we can use the full symmetry SU(2, 2|4). Calculating the Clebsch-Gordan coefficients

for the V ⊗n
F will allow, following the derivation of (4.20) from (4.12), to get the canonical

covariant form which in turn leads to diagonal gauge invariant operators using section 6.

The relevant Clebsch-multiplicities are known for n = 2 [26]. Finding the multiplicities and

the Clebsch-coefficients in terms of symmetric groups, as we do below for U(M) and SL(2),

is the next step in the solution of the free field diagonalisation problem for N = 4 SYM.

5.1 SL(2) and Sym(V ⊗k
H )

Here we illustrate our scheme with the construction of the Clebsch C ~m
Λ,MΛ,Λ1,mΛ1

,τ for the

specific example of G = SL(2), which we considered in section 2.

In the Fock space of oscillators we have

|m1, . . . ,mn〉 ∼ (a†1)
m1 . . . (a†n)mn |0〉 (5.1)

whereas the oscillators Aa give the decomposition in terms of SL(2) irreps Λ = n + k,

following equation (4.6)

|Λ,M ; (a1, . . . ak)〉 = C
Λ,M,(a1...ak)
~m

|m1, . . . ,mn〉 = A†
(a1

. . . A†
ak)(L+)M |0〉 (5.2)

so the label i in equation (4.6) is given by the indices (a1, . . . ak). The Clebsch-Gordon

coefficients of equation (4.6) can now be read off.

The next step is to decompose the label i into irreps of Sn. The indices ai carry the n−1

dimensional hook representation, H = [n − 1, 1] of Sn. Therefore the label i = (a1 . . . ak)

carries the reducible representation SymV ⊗k
H . This decomposes into the irreducible repre-

sentations Λ1 of Sn with multiplicity τ via the Clebsch Gordon coefficient C
Λ1,mΛ1

,τ

(a1...ak)

|(a1 . . . ak)〉 = C
(a1...ak)
Λ1,mΛ1

,τ |Λ1,mΛ1 , τ〉 (5.3)

and the inverse transformation is given by C
(a1...ak)
Λ1,mΛ1

,τ as

|Λ1,mΛ1 , τ〉 = C
Λ1,mΛ1

,τ

(a1...ak) |(a1 . . . ak)〉 (5.4)
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Putting all this together we get

|Λ,M,Λ1,mΛ1 , τ〉 = C
Λ1,mΛ1

,τ

(a1...ak) |Λ,M ; (a1, . . . an)〉

= C
Λ1,mΛ1

,τ

(a1...ak) C
Λ,M,(a1...ak)
~m

|m1, . . . ,mn〉 (5.5)

The Clebsch of equation (4.8) is given by

C
Λ,M,Λ1,mΛ1

,τ

~m
= C

Λ1,mΛ1
,τ

(a1...ak) C
Λ,M,(a1...ak)
~m

(5.6)

5.2 U(M) revisited

This formalism also applies to the U(M) case studied in [15]. In that case the starting

point is

|m1, . . . ,mn〉 ∼ Xm1 ⊗ · · · ⊗Xmn mi = 1 . . .M (5.7)

which is the tensor product of n fundamentals of U(M), V ⊗n
M . Then in (4.6) CΛ,M,i

~m
is

the U(M) Clebsch Gordon coefficient decomposing V ⊗n
M into irreps Λ with multiplicity

i. In this case Schur Weyl duality tells us that i also carries the fundamental of the

representation Λ of Sn. Thus Λ1 = Λ and there is no τ multiplicity.

To be explicit, to get the operators of [15]

C ~m
Λ,M,Λ1=Λ,mΛ1

=i =
1

n!

∑

σ∈Sn

BjβD
Λ
ij(σ)

n
∏

k=1

δmkp
σ−1(k)

(5.8)

Here M = (µ, β). µ labels the number of different flavour fields in the operator (µ1 X’s,

µ2 Y ’s, etc.), while β runs over the number times the trivial representation of Hµ =

Sµ1 × · · ·SµM
is contained in Sn. Bjβ is a branching coefficient for the change of basis for

the subspace of the irrep. Λ invariant under Hµ. Canonically we choose p1, . . . pµ1 = 1,

pµ1+1, . . . pµ1+µ2 = 2, . . . . With this choice we recover the covariant operators in [15]

OΛµ
iβ =

∑

~m

C ~m
Λ,µ,β,i Xm1 . . . Xmn =

1

n!

∑

σ∈Sn

BjβD
Λ
ij(σ) σXµσ−1 (5.9)

We then find the orthogonality we expect, up to a normalisation factor

∑

~m

C ~m
Λ,µ,β,iC

~m
Λ′,µ′,β′,i′ = δΛΛ′δµµ′δββ′δii′

|Hµ|

n!dΛ
(5.10)

5.3 The higher spin group

The free theory of N=4 SYM is invariant under an infinite dimensional group HS(2, 2|4)

known as the higher spin group. In the interacting theory this is broken to the supercon-

formal group SU(2, 2|4) but it can nevertheless be useful for some applications (eg possible

relations via AdS/CFT to a possible ‘tensionless limit’ of string theory) to consider this

enlarged group. When restricted to the SL(2) sector the higher spin group is known as

HS(1, 1). Operators form lowest weight representations of HS(1, 1) (which further de-

compose into an infinite number of lowest weight representations of SL(2).) The lowest
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weight states of these representations were decscribed in [27]. In terms of the oscillators

introduced in section 2.1, the higher spin algebra is spanned by the generators

Jp,q =
∑

i

(a†i )
p(ai)

q (5.11)

which clearly contains the SL(2) algebra (2.11).

If we consider truncating the fundamental fields so that we only consider states |m〉 =

(a†)m |0〉 for m ≤ M − 1 then the higher spin group truncates to U(M). Therefore the

covariant canonical form corresponding to the higher spin group is simply the M → ∞

limit of that in the previous subsection.

Therefore the results of the previous subsection generalise naturally to the higher spin

case. Irreducible representations of the higher spin group are specified by Young tableaux,

Λ1, (as observed in [27]). We have

V ⊗n
F =

⊕

Λ1⊢n

V HS
Λ1

⊗ V Sn

Λ1
(5.12)

=
⊕

Λ1,Λ

V
SL(2)
Λ ⊗ V

Com(SL(2)×Sn)
Λ,Λ1

⊗ V
(Sn)
Λ1

(5.13)

The first line is the standard Schur-Weyl duality for U(M) in the limit M → ∞. Each

higher spin representation, Λ1, then decomposes further into an SL(2) irrep Λ and the

commutant. The Clebsch gving the first line is given by (5.8). The canonical covariant

operators which form irreps of the higher spin group are given by (5.9) with Xm replaced

by (1/m!)∂mX.

5.4 The SO(6) sector

We have 6 hermitian scalar matrices in N = 4 SYM, transforming in the fundamental

of SO(6). We know from the general discussion in section 4 that the SO(6) covariant

diagonalisation of free field correlators will be solved once we have solved the Clebsch-

Gordan problem for SO(6) × Sn in V ⊗n. Here V is the fundamental of SO(6).

V ⊗n =
⊕

Λ1

V
(Sn)
Λ1

⊗ V
GL(6)
Λ1

=
⊕

Λ1,Λ2

V
(SO(6))
π(Λ2) ⊗ VΛ1,Λ2 ⊗ V

(Sn)
Λ1

(5.14)

We first decompose the n-fold tensor space according to the Sn symmetry. The Schur-

Weyl dual of Sn is GL(6) hence the decomposition in the first line. In the second line,

we decompose the GL(6) representations to SO(6) representations. The dimension of the

multiplicity space VΛ1,Λ2 is given by

DimVΛ1,Λ2 =
∑

δ

g(Λ2, 2δ; Λ1) (5.15)

Λ1 is a Young diagram with n boxes, 2δ is a partition with even parts, i.e. Young diagram

with even row lengths. The sum above includes a sum over k ≥ 0, where 2k is the number

of boxes in 2δ and n− 2k is the number of boxes in Λ2.
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The representations of GL(6) are labelled by Young diagrams with row lengths λ1 ≥

λ2 ≥ · · ·λ6 ≥ 0. The representations of SO(6) are labelled by λ1 ≥ λ2 ≥ |λ3| ≥ 0.

The last label λ3 can be positive or negative. For λ3 = 0 the irreps are constructed by

symmetrising according to the Young diagram and projecting out traces. When |λ3| > 0

the corresponding operation of Young-symmetrising and removing traces leaves us with a

reducible representation, which is a direct sum of irreps. (λ1, λ2, λ3) ⊕ (λ1, λ2,−λ3). The

operation π which appears in (5.14), when it acts on any GL(6) Young diagram Λ1 gives

either zero or a Young diagram obeying the SO(6) constraints. It is defined in terms of an

operation on Young diagrams in [31].

We have arrived above at the SO(6) × Sn decomposition by first decomposing into

GL(6) × Sn, then reducing the GL(6) to SO(6). We can equally start by decomposing

in terms of SO(6) × E6(n) where E6(n) is the commutant of SO(6) in V ⊗n described

for example in [32]. A subsequent decomposition of E6(n) to Sn should yield the same

result as (5.14). This follows from general theorems on double commutants which assert

that if A is a subalgebra of B, and End(B) ⊂ End(A) are their commutants in some

vector space, then the reduction multiplicities for irreps of B → A coincide with those of

End(A) → End(B) (see [17] ). In this case the reduction multiplicities of GL(6) → SO(6)

coincide with those of E6(n) → Sn.

5.5 The SO(4, 2) sector

In considering the sector of a scalar field X with all four derivatives acting on it, we can

use the SO(4, 2) symmetry. Generalizing the linear combinations A†
a of oscillators which

generate the lowest weights in the SL(2) sector, we now have A†
aλ where λ is an index

in the fundamental of SO(4) ⊂ SO(4, 2) and as before a is in the hook representation

VH = [n − 1, 1] of Sn. Lowest weights annihilated by Kλ, with k derivatives acting on

n-field composites can be constructed from oscillators of the form

A†
a1λ1

A†
a2λ2

· · ·A†
akλk

|0〉 (5.16)

The simplest class of such LWS are those in which the indices (λ1, λ2, . . . , λk) are taken

to be a symmetric traceless SO(4) tensor corresponding to the SO(4) Young diagram [k].

These states satisfy a type of extremality condition L0 = n + k. More generally we will

have states of the form (5.16) which involve contractions of the λi. In these cases we have

to mod out by the equations of motion, which leads to a projection of the Sym(VH ⊗ VH)

representation of A†
a1λA

†
a2λ to the Sn representation [n− 2, 2]. This has dimension n(n−3)

2

which is the number obtained by subtraction of n, for the equations of motion, from the

dimension n(n−1)
2 of Sym(VH ⊗VH). Work on a complete solution of the diagonalisation in

this sector, using the above facts to give a symmetric group description of the SO(4, 2)×Sn

Clebsch-Gordans, is in progress. It is clear that the symmetric SO(4) operators involving

the contractions will have L0 > n + k. The ‘extremal’ operators mentioned above will be

useful in the comparison to excitations of half-BPS giants in section 7.
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5.6 Fields carrying reps of product groups

Suppose the global symmetry group has the form G1 ×G2. We consider a field Ψk,m where

k is an index transforming under irrep V1 of G1 and m transforms under irrep V2 of G2.

Consider the covariant operator

(Ok1,m1;k2,m2;··· ;kn,mn
)IJ ≡ (Ψk1,m1)

i1
j1

(Ψk2,m2)
i2
j2
· · · (Ψkn,mn

)injn
(5.17)

Fields with n factors transform under the irrep (V1 ⊗ V2)
⊗n. With σ ∈ Sn acting simulta-

neously on V1 and V2, the commutant of G1 ×G2 contains Sn. We can consider the group

G1 ×G2 × Sn acting on the n-field composites. Correspondingly there is a decomposition

of the n-fold tensor product into irreps. of G1 × G2 × Sn. The irreps are related to the

product states as

|Λ1,MΛ1 ,Λ2,MΛ2 ,Λ3,mΛ3, τ〉 = C
~k,~m
Λ1,MΛ1

,Λ2,MΛ2
,Λ3,mΛ3

,τ

∣

∣

∣

~k, ~m
〉

(5.18)

Λ1 is an irrep of G1, Λ2 of G2 and Λ3 of Sn. Conversely

∣

∣

∣

~k, ~m
〉

= C
Λ1,MΛ1

,Λ2,MΛ2
,Λ3,mΛ3

,τ

~k,~m
|Λ1,MΛ1 ,Λ2,MΛ2 ,Λ3,mΛ3 , τ〉 (5.19)

In terms of vector spaces this decomposition is

(V1 ⊗ V2)
⊗n =

⊕

Λ1,Λ2,Λ3

V G1
Λ1

⊗ V G2
Λ2

⊗ V Sn

Λ3
⊗ V

Com(G1×G2×Sn)
Λ1,Λ2,Λ3

(5.20)

τ over the multiplicity space V
Com(G1×G2×Sn)
Λ1,Λ2,Λ3

.

The orthogonality of Clebsch-Gordan coefficients is the same as before and if we

define operators

(OΛ1,MΛ1
,Λ2,MΛ2

,Λ3,mΛ3
,τ )

I
J =

∑

~k,~m

C
~k,~m
Λ1,MΛ1

,Λ2,MΛ2
,Λ3,mΛ3

,τ (O~k,~m
)IJ (5.21)

then the covariant two-point function is diagonal in the (Λ1,MΛ1 ,Λ2,MΛ2 ,Λ3, τ) indices,

exactly analogous to the single group case in equation (4.20).

5.6.1 Product Clebsch in terms of single group Clebschs

Another way that we could organise (V1 ⊗ V2)
⊗n, in contrast to the G1 ×G2 × Sn decom-

position in (5.20), is in terms of the separate groups

(V1 ⊗ V2)
⊗n = V ⊗n

1 ⊗ V ⊗n
2

=





⊕

Λ1,Λ4

V G1
Λ1

⊗ V Sn

Λ4
⊗ V

Com(G1×Sn)
Λ1,Λ4



 ⊗





⊕

Λ2,Λ5

V G2
Λ2

⊗ V Sn

Λ5
⊗ V

Com(G2×Sn)
Λ2,Λ5





We use the Clebsch C
Λ1,MΛ1

,Λ4,mΛ4
,τ1

~k
for G1 and C

Λ2,MΛ2
,Λ5,mΛ5

,τ2

~m
for G2. Given the

simultaneous action of Sn on (V1⊗V2)
⊗n, to connect this decomposition with that in (5.20)
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we tensor together the two Sn irreps V Sn

Λ4
and V Sn

Λ5
to get the irrep of the simultaneous Sn

action V Sn

Λ3

V Sn

Λ4
⊗ V Sn

Λ5
=

⊕

Λ3

V Sn

Λ3
C(Λ4,Λ5; Λ3) (5.22)

C(Λ4,Λ5; Λ3) counts the number of times V Sn

Λ3
appears in the Sn tensor product V Sn

Λ4
⊗V Sn

Λ5
.

This construction shows us how to write down the relation between the G1 × G2 × Sn

Clebsch and the (G1 × Sn) × (G2 × Sn) Clebschs

C
Λ1,MΛ1

,Λ2,MΛ2
,Λ3,mΛ3

,τ

~k,~m
= C

Λ1,MΛ1
,Λ4,mΛ4

,τ1

~k
C

Λ2,MΛ2
,Λ5,mΛ5

,τ2

~m
Cτ3Λ3

mΛ3

Λ4
mΛ4

Λ5
mΛ5

(5.23)

The Sn Clebsch-Gordan coefficient Cτ3Λ3
mΛ3

Λ4
mΛ4

Λ5
mΛ5

gives the change of basis for the

decomposition in (5.22); it maps the states of the reps in V Sn

Λ4
⊗ V Sn

Λ5
to those in V Sn

Λ3
. τ3

labels the C(Λ4,Λ5; Λ3) degeneracy. The τ which labels the product group commutant

V
Com(G1×G2×Sn)
Λ1,Λ2,Λ3

is now a combination of the separate group multiplicities and the Sn

tensor label τ3: τ = (τ1, τ2, τ3).

V
Com(G1×G2×Sn)
Λ1,Λ2,Λ3

=
⊕

Λ4,Λ5

V
Com(G1×Sn)
Λ1,Λ4

⊗ V
Com(G2×Sn)
Λ2,Λ5

C(Λ4,Λ5; Λ3) (5.24)

In the special case when the gauge group is U(1), so that the fields commute, Λ3(Sn)

is the trivial representation. This forces Λ4(Sn) = Λ5(Sn). The same thing applies when

considering bosonic oscillators carrying indices of G1 ×G2.

6 Gauge invariant operators

We have organised n copies of the fundamental fields in terms of representations of the

global symmetry group G.

OΛ,MΛ,Λ1,mΛ1
,τ = C ~m

Λ,MΛ,Λ1,mΛ1
,τWm1 ⊗Wm2 ⊗ · · · ⊗Wmn (6.1)

We now introduce the U(N) gauge group indices

(Wm)ij (6.2)

and view the Wm as operators on the fundamental representation VN of U(N). To form

gauge-invariant operators we multiply these matrices together and then take products of

traces organised by the symmetric group element α ∈ Sn

tr(α Wm1 ⊗Wm2 ⊗ · · · ⊗Wmn) = (Wm1)
i1
iα(1)

(Wm2)
i2
iα(2)

· · · (Wmn)iniα(n)
(6.3)

where the trace is being taken in V ⊗n
N . We can reorganise these in terms of representations

R of U(N) using the Schur-Weyl dual Sn representation matrices DR
ij(α)

1

n!

∑

α∈Sn

DR
ij(α) tr(α Wm1 ⊗Wm2 · · · ⊗Wmn) (6.4)
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As a representation of U(N), R has at most N rows.

Combining the free Sn indices with an Sn Clebsch-Gordan coefficient gives a gauge

invariant operator

OΛ,MΛ,Λ1,τ,R,τΛ1,R = CτΛ1,R Λ1
mΛ1

R
i

R
j C ~m

Λ,MΛ,Λ1,mΛ1
,τ

1

n!

∑

α∈Sn

DR
ij(α) tr(α Wm1 ⊗ · · · ⊗Wmn)

= CτΛ1,R Λ1
mΛ1

R
i

R
j

1

n!

∑

α∈Sn

DR
ij(α) tr

(

α OΛ,MΛ,Λ1,mΛ1
,τ

)

(6.5)

We can invert the Clebschs to recover from these operators the basic gauge invariant

operators in (6.3). This means that our new basis is complete. It also counts correctly at

finite N , as demonstrated in the next section. Furthermore, following the methods of [15],

it is fully diagonal in all its labels.

〈

OΛ,MΛ,Λ1,τ,R,τΛ1,R (O†)
Λ′,M ′

Λ′ ,Λ
′
1,τ ′,R′,τ ′

Λ′
1,R′

〉

= δΛΛ′δMΛM ′
Λ′
δΛ1Λ′

1
δττ ′ CτΛ1,R Λ1

mΛ1

R
i

R
j C

τ ′
Λ′
1

,R′ Λ′
1

m′
Λ′
1

R′

k
R′

l

×
1

n!

∑

α∈Sn

DR
ij(α)

1

n!

∑

α′∈Sn

DR′

kl (α
′)

∑

σ∈Sn

DΛ1

mΛ1
m′

Λ′
1

(σ) tr(ασα′σ−1)

= δΛΛ′ δMΛM ′
Λ′
δΛ1Λ′

1
δττ ′ δRR′ δτΛ1,R τ ′

Λ′
1

,R′

n!dΛ1

d2
R

DimR (6.6)

In the second line we have used the canonical covariant correlator (4.20). DimR is the

U(N) dimension of R.

6.1 Finite N counting

We show here that the operators defined in equation (6.5) count correctly for finite N . The

finite N partition function is given in terms of the single letter partition function f(x), for

bosonic x, by an integral over the U(N) matrix U [33, 34].

Z =

∫

[dU ] exp

{

∑ 1

m
f(xm)tr(U †)mtrUm

}

(6.7)

f(x) is the character of the fundamental representation VF . For U(3) it is

f(xm) = xm
1 + xm

2 + xm
3 (6.8)

and for SL(2) it is

f(xm) =
qm

1 − qm
(6.9)

Now we perform the group integration for U(N) following [21] (see also [35]). If we

expand out

exp

{

∑ 1

m
f(xm)tr(U †)mtrUm

}

(6.10)
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we get

∑

n

∑

Ci∈Sn

n
∏

j=1

(

f(xj)
)ij 1

jij ij!
tr(CiU) tr(CiU

†) (6.11)

where Ci is a partition of n or a conjugacy class of Sn with i1 1-cycles, i2 2-cycles, . . . in n-

cycles. In 1

j
ij ij !

the jij comes from the 1
m

in (6.10) and the ij ! comes from exp(x) =
∑

k
1
k!x

k.

Using the identity tr(CiU) =
∑

R(U(N)) χR(Ci)χR(U) and the group integral

∫

[dU ]χR(U)χR′(U †) = δRR′ (6.12)

we get the finite N partition function

Z =
∑

n

∑

R(U(N))

∑

Ci∈Sn

n
∏

j=1

(

f(xj)
)ij 1

jij ij!
χR(Ci)χR(Ci) (6.13)

Now if we treat x as a diagonal matrix (for U(3) we have (x1, x2, x3) on the diagonal, for

SL(2) we have (q, q2, q3, . . . )) and use

n
∏

j=1

(

f(xj)
)ij = tr(Cix) =

∑

Λ1(Sn)

χΛ1(Ci)χΛ1(x) (6.14)

then we get

Z =
∑

n

∑

R(U(N))

∑

Λ1(Sn)

χΛ1(x) C(R,R,Λ1) (6.15)

where C(R,R,Λ1) is the number of possible τΛ1,R multiplicities in (6.5), i.e. the number

of times Λ1 appears in the symmetric group tensor product R⊗R.2 As representations of

U(N), we only sum over Young diagrams R with at most N rows.

We have treated the global symmetry group here as GL(∞). A further decomposition

into irreps. of G gives

V
GL(∞)
Λ1

=
∑

Λ

V G
Λ ⊗ VΛ,Λ1 (6.16)

When we do this we finally see that the operators in (6.5) provide this counting.

Z =
∑

n

∑

R(U(N))

∑

Λ(G)

∑

Λ1(Sn)

dΛ,Λ1 χΛ(x) C(R,R,Λ1) (6.17)

where χΛ(x) is now a G character and dΛ,Λ1 is the dimension of VΛ,Λ1 labelled by the τ

index in (6.5).

2C(R,S, T ) = 1
n!

P

σ∈Sn
χR(σ)χS(σ)χT (σ) and

Qn

j=1
1

j
ij ij !

= |Ci|
n!

where |Ci| is the size of the class Ci.
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7 Worldvolume excitations of giants and gauge invariant operators

7.1 Worldvolume excitations: review and comments

We review and comment on some results from [22] on the worldvolume excitations of half-

BPS giant gravitons. Consider 3-brane giants expanding in the AdS5. Use coordinates

(t, v1, v2, v3, v4) for the AdS where we have a metric

ds2 = −

(

1 +

4
∑

k=1

v2
k

)

dt2 + L2

(

δij +
vivj

(1 +
∑

k v
2
k)

)

dvidvj (7.1)

L is the AdS5 or S5-radius. The S5 can be described in analogous coordinates

ds2 = L2

[(

1 −
4

∑

k=1

y2
k

)

dφ2 +

(

δij +
yiyj

1 −
∑

k y
2
k

)

dyidyj

]

(7.2)

In global coordinates the AdS metric is

ds2 = −

(

1 +
r2

L2

)

dt2 +
dr2

(1 + r2

L2 )
+ r2dΩ2

3 (7.3)

It is also useful to write the S5 metric as

ds2 = L2(dθ2 + cos2 θdφ2 + sin2 θdΩ2
3) (7.4)

The AdS-giant graviton solution has

φ = ω0t

ω0 =
1

L

Pφ = N

(

r0
L

)2

(7.5)

and the half-BPS property guarantees the energy is E =
Pφ

L
. The brane worldvolume

coordinates are τ, σ1, σ2, σ3. The coordinate τ is identified with the global time t. The

σ1, σ2, σ3 are identified with angles in AdS.

The fluctuations are expanded as

r = r0 + ǫ δr(τ, σ1, σ2, σ3)

φ = ω0τ + ǫ δφ(τ, σ1, σ2, σ3)

yk = ǫ δyk(τ, σ1, σ2, σ3) (7.6)

These perturbations are expanded in spherical harmonics.

δr(τ, σi) = δ̃r e−iωτYl(τ, σi)

δφ(τ, σi) = δ̃φ e−iωτYl(τ, σi)

δyk = δ̃yk e
−iωτYl(τ, σi) (7.7)
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The (φ, yk) are coordinates for the sphere S5. The Yl are spherical harmonics on S3 ⊂ AdS5.

They are symmetric traceless representations of SO(4). They have a quadratic Casimir

l(l + 2) for the symmetric traceless representation of dimension (l+1)2. The frequencies of

these oscillations are calculated from the linearized equations of motion of the brane actions

S = SDBI + SCS (7.8)

They lead (after a small simplification of expressions in [22]) to three solutions

ω− =
l

L

ω+ =
l + 2

L

ω =
l + 1

L
(7.9)

The modes with frequencies ω± are related to linear combinations δ̃r, δ̃φ. The frequency ω

is related to four modes δ̃vm which transform in the fundamental of SO(4) in SO(6). It is

very interesting that these are all integer multiples of the AdS-scale and approach ω = l/L

in the large l limit. Note also that ω is the frequency for oscillations in t , the global time

of AdS. The energies of the fluctuating giant gravitons are given by E = n
L

+ ω where

n is the angular momentum of the background giant. The energy is related to scaling

dimension in the dual CFT [3]. These energy spacings in integer units of 1
L

are precisely

the sort of spacings we get in free Yang Mills theory. Taking large angular momentum

limits as a way to reach a classical regime where strong and weak coupling coupling can

be compared directly is familiar from [38].

The Yl,m are representations of SO(4). Specifying the eigenvalues of the Cartan

amounts to fixing two spins S1, S2. The SL(2) sector of gauge theory operators we con-

sidered, involving multitraces of ∂S
1+i2X

n corresponds to rotations in a fixed plane. This

means that in each space of spherical harmonics of given l we are looking at a single state.

Now if we consider a second quantization in the field theory of the branes, we would in-

troduce a Fock space generator α†
l for each spherical harmonic. This has energy l/L above

the background energy of the brane. General states look like

α† k1
1 α† k2

2 · · · |0〉 (7.10)

The number of states at excitation energy k is the number of ways of writing k = k1 +

2k2 + · · · =
∑

i kili which is the number of partitions of k. When we restore the full SO(4)

we have states of the form

α†
l1,m1

α†
l2,m2

· · · |0〉 (7.11)

In this case it is useful to restrict attention to the symmetric traceless representations [k]

of SO(4) with excitation energy equal to k. In this case, the number of excited states of

total energy L0 = n + k is again given by partitions of k. In the discussion below we will

show that that there is an easy way to get these states from the gauge theory. In greater

generality we should consider states of the form

α†
l1,m1,I1

α†
l2,m2,I2

· · · |0〉 (7.12)
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where I’s are indices running from 1 to 6 which label the six eigenmodes built from (7.7).

Four of these are in the fundamental of SO(4) ⊂ SO(6). The fact that the excitation

energies are spaced in units of 1
L

(rather than in units of the brane size) was a bit of a

surprise, discussed at length in [22]. An important point is that the kind of integer spacing

in (7.9) is exactly what we have in free Yang Mills limit of the dual CFT. We will see below

that this Fock space structure of orthogonal states emerges indeed from the construction

of gauge invariant operators in the free dual Yang Mills theory. A connection between

excited giant gravitons and the formulae for excitation energies (7.9) was made in [36].

The unravelling of the Fock space structure of giant graviton worldvolume field theory

from gauge invariant operator counting given below is new.

7.2 Comparison to gauge invariant operators

We have constructed, in section 2, the lowest weights of the SL(2) sector by mapping states

A†
a1
A†

a2
· · ·A†

al
|0〉 (7.13)

in an oscillator construction of SL(2) to gauge theory operators. The index a transforms

in the hook representation [n − 1, 1] of Sn. The A†’s are bosons so we are looking at the

symmetric tensor product of the hook. These were constructed as lowest weight states

generated by P11̇ which forms part of the SO(4, 2) conformal algebra. These excitations

correspond to exciting one spin inside AdS (for more details on the geometry of multi-

ple spins see for example [37] in the context of spinning strings), hence to states of the

form (7.10). After describing how to lift this to more general SO(4, 2) states, we will show

that the counting in the case of single giants agrees with the bulk analysis reviewed above.

Note for now that the above states transform in Sym(V ⊗k
H ) of Sn.

When we consider the full SO(4, 2) symmetry, we have additional generators Kλ form-

ing the fundamental of SO(4). Correspondingly we have Pλ transforming in the fundamen-

tal of SO(4). When we consider lowest weight states annihilated by all the Kλ, we have

states of the form

A†
a1λ1

A†
a2λ2

· · ·A†
akλk

|0〉 (7.14)

Among these LWS are those transforming in the symmetric traceless representation of

SO(4) associated with the symmetric Young diagram [k] and with energy L0 = n+ k. As

discussed in 5.5, these are a simple class of states which do not require projecting out of

states due to the equations of motion, which require setting PλPλ to zero. Since the λ’s are

symmetrised, and the A† are bosons, the indices a1, a2, . . . , al are symmetric, i.e. we have

the symmetric k-fold tensor power of the hook representation [n−1, 1] of Sn. Orthonormal

states in this sector are then written as

C
[k],M[k]

λ1···λk
C

Λ1,[k],mλ1
,τ ′

a1...ak
A†

a1λ1
A†

a2λ2
· · ·A†

akλk
|0〉 (7.15)

The first Clebsch’s are for the symmetric traceless of SO(4) which are precisely the repre-

sentations we discussed under (7.11). The second Clebsch have been discussed before in

section 2. They decompose the Sym(V ⊗k
H ) into irreps. of Λ1 of Sn. When we form gauge
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invariant operators as in section 6 there are constraints relating Λ1 to the U(N) Young dia-

gram R which organises the traces. This representation R in the half-BPS case allows a map

to the type of giant [8]. Young diagrams with a few (order 1) long (order N for example)

columns map to sphere giants. Those with a few long rows map to AdS giants. Non-abelian

worldvolume symmetries emerge when we have rows or columns of equal length. This map

also works for open string excitations and there are elegant tests involving the counting of

states which are sensitive to the presence of non-abelian symmetries [10, 11].

Consider Young diagrams of the form R = [n] which correspond to single AdS gi-

ants of angular momentum n. Recall that the gauge invariant operators are labelled by

R,Λn+k,M,Λ1, τ, τΛ1,R. R is a U(N) irrep. Λn+k is the lowest weight of the SL(2) which

is completely determined by the excitation energy l. M labels states in Λn+k. Λ1 is an

irrep. of Sn. τ runs over the multiplicity of Λ1 in the symmetric tensor product of the hook

representation. τΛ1,R runs from 1 to C(R,R,Λ1). For fixed R the multiplicity of LWS is

∑

Λ1

C(R,R,Λ1)Mult(Sym(V ⊗k
H ),Λ1) (7.16)

By summing over states for fixed R we can get excited states of a fixed type of giant

worldvolume. In particular we are interested in R = [n]. The inner tensor product of R

with itself only contains the identity rep. Λ1 = [n]. So the number of lowest weights at

level k is just the multiplicity of [n] in the symmetric tensor product of the hook. We have

a generating function for this derived in section 3. The generating function including the

descendants, is (using (3.7) or (3.11) )

1

(1 − q)(1 − q2)(1 − q3) · · · (1 − qn)
(7.17)

The coefficient of qk is the number of partitions of k with no part bigger than n. Note that

n is the number of boxes in the Young diagram describing the giant. For the semiclassical

approximation of giant brane worldvolume to be valid, this is of order Nα (for α close

to 1), k is the excitation on the brane worldvolume, which we are treating in a linearized

approximation, so we certainly want that to be small compared to n. When k is smaller

than n, the above just counts unrestricted partitions of k. This matches the counting of

Fock space states in (7.15).

Hence, in the regime of interest, where k is much bigger than one (so we can expect

GKP [38] type arguments to be valid) but smaller than the energy of the brane, the above

counting of partitions of k is exactly what we are getting from quantizing a class of vibra-

tions of the AdS giant. Using this emergence of Fock space structures from the counting of

states in the tensor product of Sym(V ⊗k
H ) we therefore find the correct counting of gauge

theory operators which correspond to states of the form (7.10) and (7.11) with energy L0 =

n+k and with a single spin k in the case (7.10) or with SO(4) representation [k] for (7.11).

In fact we can also see where the six different species of oscillations could come from.

In the above discussion we have been considering BPS giants built from Schur polynomials

of X = X1+iX2 and then perturbed by replacing X with derivatives Pλ acting on X, of the

form P ∗
λX. We could also consider powers of Pλ acting on Xi (with i = 3, 4, 5, 6 ) replacing
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the X. And finally we can consider powers of Pλ acting on X† as the impurities. So in all

we have six types of impurities P ∗
λX,P

∗
λX

†, P ∗
λXi. These correspond to six sets of gauge

invariant operators matching states with the right energies of the form (7.10), which come,

in the spacetime worldvolume analysis to exciting quanta of δr, δvm, δφ excitations. Given

the simplicity of ω− we would expect that they correspond to the simplest construction

in gauge theory, namely using P ∗
λX impurities, which they match precisely in energy. If

we consider the states in (7.12) and restrict to the case where all the impurities are of the

same type and the SO(4) representation is [k] with the energy being E = n+ k, then the

above discussion extends easily to give the corresponding gauge theory duals. A complete

account of the case with mixed impurities will be left for the future.

7.3 Comments

There are many interesting extensions of the above discussion which could be considered.

We have chosen the simplest R of the form [n] which correspond to AdS giants. If we

consider R = [n1, n2] and sum over Λ1 as in (7.16) this should correspond to excitations

in spacetime of multiple-giants described by a U(2) (if n1 = n2 ) or U(1) × U(1) (if

n1 6= n2 ) worldvolume DBI gauge theory. A similar simple counting of states holds true

for excitations of S-giants [22]. They will be associated to spherical harmonics of an SO(4)

in the SO(6). So we expect that excitations in the gauge theory from the SO(6) sector

should also have this kind of free field counting in an appropriate large angular momentum

limit. The SO(4) ⊂ SO(4, 2) excitations considered in (7.15) also exist for R = [1n]. They

should correspond to excitations of sphere giants, but it is not obvious to us how a Fock

space structure emerges from considering their motions in the transverse AdS. It will be

interesting to clarify this puzzle.

Note that we are making here a comparison between zero coupling in Yang Mills

to spacetime calculations dual to strong coupling Yang Mills. This works best for large

angular momenta where l is large so that the frequencies can all be approximated by

ω = l, but smaller than n which is the large angular momentum of the giant. This gives

a different context of excitations of giant gravitons, where the basic idea of large quantum

numbers allowing strong to weak coupling comparisons [38] continues to apply. Here the

parameters N, k, n are all large.

There have been earlier discussions of supersymmetric states obtained from the quan-

tization of moduli spaces of giants and the comparison with gauge theory counting [39–42].

In the discussion above we have been interested in all the excitations in the free theory of

a given half-BPS giant. A subset of these will be supersymmetric but a lot of the states

will be non-supersymmetric. We expect that, in analogy with discussions of semiclassi-

cal strings [37, 38] appropriate limits of large quantum numbers can be used to compare

non-supersymmetric states. The new technical ingredient in the above treatment is the

use of a diagonal basis of gauge theory operators at finite N , where the label R allows the

identification of the giant in question, and additional global symmetry labels help the map

to objects in spacetime. The use of symmetric group data in organising the multiplicities of

states for fixed R and fixed global symmetry quantum numbers shows the emergence, in the
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limit of large n, of Fock space counting from properties of symmetric group decompositions

such as Sym(V ⊗n
H ). At finite n we have a cut-off Fock space.

8 One-loop mixing in N = 4

In [43] the one-loop mixing of the Clebsch-Gordan basis introduced in [15] for the G = U(2)

sector of N = 4 super Yang-Mills was analysed. These operators only mix if the U(N)

representations specifying their multi-trace structures are related by the repositioning of a

single box of the Young diagram. Here we find the same result for the full PSU(2, 2|4) sector,

using our general characterisation of multi-trace operators with arbitrary global symmetry.

The complete one-loop non-planar dilatation operator is given by [26]

D(g) = D0 −
g2
YM

8π2
H + O(g3

YM) (8.1)

where

H =
∞

∑

j=0

h(j)(Pj)
AB
CD : tr([WA, W̃

C ][WB , W̃
D]) : (8.2)

(W̃C)ij is the derivative d

d(WC)j
i

. h(j) ≡
∑j

k=1
1
k

are the harmonic numbers and Pj is the

projector for VF ⊗VF = ⊕jVj . For SL(2) and PSU(2, 2|4) Vj appears with unit multiplicity

in V ⊗2
F (cf. (3.3) where m(j, 2) = 1).3 The dilatation operator separates out V ⊗2

F in V ⊗n
F

and then projects onto it with the factors in (8.2).

The action of the dilatation operator has been analysed in the planar limit for single

traces using the Bethe Ansatz (see for example [44, 45]). In the non-planar limit multi-

trace operators can join and split [46]. We will find that the mixing is neatly constrained

if we organise the multi-trace operators using U(N) representations as we have in (6.5).

The action of H on tr(αWm1 · · ·Wmn) is compactly written by introducing an extra

index, tracing in V n+1
N rather than V n

N . The extra index encodes awkward contractions in

the action of the dilatation operator.

: tr([WA, W̃
C ][WB , W̃

D]) : tr(αWm1 · · ·Wmn) =

×
1

(n−2)!

∑

σ∈Sn

δC
mσ(n−1)

δD
mσ(n)

∑

ρ1,ρ2∈Sn+1

f(ρ1, ρ2) trn+1

(

ρ1σ
−1ασρ2Wmσ(1)

· · ·Wmσ(n−2)
WAWBIN

)

IN is the N × N identity matrix. f(ρ1, ρ2) is only non-zero on the S3 subgroup of Sn+1

that permutes the n− 1 and n indices, where the derivatives act, and the new n+ 1 index.

Its non-zero values give the four terms of the commutators in (8.2).

f( (n− 1, n) , (n, n+ 1) ) = 1

f( (n− 1, n + 1) , (n, n+ 1) ) = −1

f( (n, n+ 1) , (n− 1, n + 1) ) = −1

f( (n, n+ 1) , (n− 1, n) ) = 1 (8.3)

3In the SL(2) × S2 decomposition of V ⊗2
F , the symmetric representation V

S2

[2] appears with even j and

the antisymmetric V
S2

[1,1]
with odd j.
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If we introduce the projector we find

∞
∑

j=0

h(j)(Pj)
AB
CD : tr([WA, W̃

C ][WB , W̃
D]) : tr(αWm1 · · ·Wmn) =

∑

ρ1,ρ2∈Sn+1

f(ρ1, ρ2)

×
1

(n − 2)!

∑

σ∈Sn

∞
∑

j=0

h(j) trn+1

(

ρ1σ
−1ασρ2Wmσ(1)

· · ·Wmσ(n−2)
Pj

(

Wmσ(n−1)
Wmσ(n)

)

IN

)

Now consider the action on our gauge-invariant operator (6.5)

HOΛ,MΛ,Λ1,τ,R,τΛ1,R =
1

(n− 2)!

∑

ρ1,ρ2∈Sn+1

f(ρ1, ρ2) C
τΛ1,R Λ1

mΛ1

R
i

R
j

∑

α∈Sn

DR
ij(α)

×
∞
∑

j=0

h(j)C ~m
Λ,MΛ,Λ1,mΛ1

,τ trn+1

(

ρ1αρ2Wm1 · · ·Wmn−2Pj

(

Wmn−1Wmn

)

IN

)

(8.4)

Here, using properties of our operators, all the σ actions cancel.

To encapsulate the action of the projector we rewrite the covariant decomposi-

tion of V ⊗n
F in terms of V ⊗n−2

F ⊗ V ⊗2
F . We unclutter the notation by defining |Λ〉 ≡

|Λ,MΛ,Λ1,mΛ1, τ〉 for the covariant basis.

|Λ〉 =
∑

~m

C ~m
Λ

∑

Λn−2,Λ2

CΛn−2

~mn−2 CΛ2

~m2

∣

∣Λn−2
〉

⊗
∣

∣Λ2
〉

=
∑

Λn−2,Λ2

〈Λn−2,Λ2|Λ〉
∣

∣Λn−2,Λ2
〉

(8.5)

∣

∣Λn−2
〉

lives in V ⊗n−2
F while

∣

∣Λ2
〉

lives in V ⊗2
F . ~mn−2 = (m1, . . . ,mn−2) and ~m2 =

(mn−1,mn).

The projector Pj in (8.4) projects onto Λ2 = j. The one-loop two-point function is then

〈

(O†)
Λ′,M ′

Λ′ ,Λ
′
1,τ ′,R′,τ ′

Λ′
1

,R′
H OΛ,MΛ,Λ1,τ,R,τΛ1,R

〉

=
1

(n− 2)!

∑

ρ1,ρ2∈Sn+1

f(ρ1, ρ2) C
τΛ1,R Λ1

mΛ1

R
i

R
j C

τ ′
Λ′
1,R′ Λ′

1

m′
Λ′
1

R′

k
R′

l

∑

α,α′∈Sn

DR
ij(α) DR′

kl (α′)

×
∑

Λn−2,Λ2=j

h(j) 〈Λ′|Λn−2,Λ2〉 〈Λn−2,Λ2|Λ〉 trn+1

(

ρ1αρ2α
′
I
n+1
N

)

(8.6)

The trace can be expressed as a sum over (n+ 1)-box representations T of Sn+1 and U(N)

with at most N rows.

trn+1

(

ρ1αρ2α
′
I
n+1
N

)

=
∑

T⊢n+1

χT (ρ1αρ2α
′)DimT (8.7)

The α and α′ sums in (8.6) force T to reduce to both R and R′ for the Sn subgroup of

Sn+1. Since T reduces on its Sn subgroup to those Young diagrams with a single box

removed from T , R and R′ must be related by the repositioning of a single box for this

one-loop two-point function not to vanish. This analysis is pursued in more detail in [43].
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The one-loop non-planar mixing of this complete basis of multi-trace operators is

therefore highly constrained. Although the operators are not diagonal at one-loop, their

very limited mixing suggests they are close to the eigenstates. It would be particularly

interesting to find the sixteenth-BPS operators at one loop and gain an understanding of

the counting of black hole entropy, along the lines of [42, 47].

9 Summary and outlook

We have given a general construction of diagonal gauge invariant operators for a U(N)

gauge theory with global symmetry G in the free field limit. The Clebsch-Gordan coeffi-

cients for the G× Sn decomposition of V ⊗n
F , where VF is a fundamental representation of

G, play a crucial role. We have exploited the result of [15] which showed that once the

covariant correlators are brought to a standard form, which we have called the “canonical

covariant form” then the gauge invariant diagonalisation follows using Clebsch-Gordan co-

efficients of Sn. The G×Sn decomposition contains representation labels Λ,Λ1 of G and Sn

respectively. We showed in this paper how to use the corresponding Clebsch-Gordan coef-

ficients, obeying standard Clebsch orthogonality properties (4.12), to construct operators

with correlators of the canonical covariant form (4.20).

The construction of gauge invariant objects uses a representation label R corresponding

to U(N) and its Schur-Weyl dual Sn. This label appears in the simplest set-up in the half-

BPS sector [8], and is interpreted in terms of giant gravitons. The final step of going

from canonical covariant form to gauge invariant diagonal form uses the Clebsch-Gordan

coefficients for the Sn inner tensor product R⊗R→ Λ1. We showed that the construction

of a diagonal basis of gauge invariant operators matches the counting of gauge invariant

operators done using Matrix Model techniques [21].

As special cases we have considered G = U(M),SL(2),SO(6) which are relevant to

specific sectors of N = 4 SYM theory. In the case of U(M) we have shown that the multi-

matrix diagonalisation result of [15] contains a formula for the Clebsch-problem of U(M)

decomposition of V ⊗n
M in terms of the symmetric group data of branching coefficients. For

SL(2) we have shown how the SL(2)×Sn Clebsch-problem for the n-fold tensor product of

the discrete series representation spanned by X,∂X, ∂2X . . . can be solved by considering

one energy level at a time, labelled by k, the total number of derivatives involved in the

n-fold tensor product. The total number of lowest weight states appearing at fixed k can

be neatly described in terms of oscillator constructions of SL(2). This leads to a mapping

of the problem of diagonalising the multiplicity of LWS at fixed k into a problem involving

the Sn × Sk decomposition of the k-fold tensor power of a hook representation of Sn of

dimension n − 1. This Sn × Sk problem has some surprising Fock space structures in the

large n, k limit. These structures have been used to identify gauge invariant operators with

energies and multiplicities matching those appearing in earlier work on the excitations of

giant gravitons computed from the point of view of a worldvolume analysis [22].

We expect that further investigations on the diagonalisation of gauge invariant op-

erators will allow more detailed comparisons between excitations of giant gravitons in

spacetime and gauge theory operators. Comparisons going beyond free fields in gauge
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theory and beyond the leading semiclassical approximations in giant gravitons will also be

instructive. The formula for the 1-loop dilatation operator acting on our basis, given in

section (8), is a step in this direction.
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A Clebsch-Gordan decomposition for V
⊗k

H

We will collect several useful facts about the decomposition into Sn × Sk representations

of the k-fold tensor product V ⊗k
H of the hook representation VH of Sn associated with the

Young diagram [n− 1, 1].

A.1 Multiplicities from characters

The k-fold tensor product decomposes as follows

V ⊗k
H =

⊕

Λ1,Λ2

VΛ1 ⊗ VΛ2 ⊗ VΛ1,Λ2 (A.1)

Here VΛ1 is an irrep of Sn, VΛ2 is an irrep. of Sk , and VΛ1,Λ2 is an irrep of Com(Sn × Sk),

the algebra commuting with Sn × Sk in the V ⊗k
H .

The dimensions dΛ1,Λ2 of VΛ1,Λ2 appear in the oscillator construction of LWS (lowest

weight states) in the tensor products of the fundamental SL(2) representation. We can

calculate these dimensions using characters of Sn and Sk.

dΛ1,Λ2 = tr
V ⊗k

H

(

PΛ1

dΛ1

⊗
PΛ2

dΛ2

)

(A.2)

The projectors PΛ1 , PΛ2 are given by

PΛ1

dΛ1

=
1

n!

∑

σ∈Sn

χΛ1(σ)σ (A.3)

and

PΛ2

dΛ2

=
1

k!

∑

τ∈Sk

χΛ2(τ)τ (A.4)

Hence we can write

dΛ1,Λ2 =
1

k!

∑

τ∈Sk

χΛ2(τ)
1

n!

∑

σ∈Sn

χΛ1(σ)tr
V ⊗k

H
(τ ⊗ σ)

=
1

k!

∑

τ∈Sk

χΛ2(τ)
1

n!

∑

σ∈Sn

χΛ1(σ)
∏

i

(trVH
(σi))ci(τ) (A.5)

– 32 –



J
H
E
P
0
4
(
2
0
0
9
)
0
8
9

For computer code to calculate this multiplicity see section C. Here ci(τ) is the number of

cycles of length i in the permutation τ . To see this note that

〈a1..ak|σ |a1..ak〉 = 〈a1..ak|σ(a1) · · · σ(ak)〉

〈a1..ak| τ |a1..ak〉 = 〈a1..ak|aτ(1) · · · aτ(k)〉

〈a1|σ |a2〉 = DH
a1a2

(σ) (A.6)

A.2 Clebsch-Gordan coefficients

For the Clebsch-decomposition of V ⊗k
H into Λ1(Sn)⊗Λ2(Sk), the first thing we need is the

multiplicities. We also need in section 2 the properties of the Clebsch-Gordan coefficients

for the case Λ2 = [k]. Here we state some general properties valid for any Λ2.

For the basic Clebsch problem of coupling a pair of irreps to a third R ⊗ S → T

we have previously used formulae of the type DDD = CC and DDC = DC derived for

example in [48].4 These were derived by inserting complete sets of states etc. Similar

techniques lead to similar equations, which allow us , given the matrix elements of Sn

irreps., to compute the Clebsch.

The following is the analog of DDC = DC
∑

a1,...,ak

DH
b1aτ(1)

(σ)DH
b2aτ(2)

(σ) · · ·DH
bkaτ(k)

(σ)C
Λ1,Λ2,mΛ1

,mΛ2
; τΛ1,Λ2

a1...ak

= C
Λ1,Λ2,m′

Λ1
,m′

Λ2
; τΛ1,Λ2

b1···bk
DΛ1

m′
Λ1

mΛ1
(σ)DΛ2

m′
Λ2

mΛ2
(τ) (A.7)

The following is the analog of DDD = CC.
∑

σ∈Sn

∑

τ∈Sk

DΛ1

mΛ1
,m′

Λ1

(σ)DΛ2

mΛ2
,m′

Λ2

(τ) DH
a1bτ(1)

(σ) · · ·DH
akbτ(k)

(σ)

=
∑

τΛ1,Λ2

C
τΛ1,Λ2

,Λ1,Λ2,mΛ1
,mΛ2

b1...bk
C

τΛ1,Λ2
,Λ1,Λ2,m′

Λ1
,m′

Λ2
a1...ak

(A.8)

A.3 Symmetrised Clebsch from ordinary Clebsch

Now we specialise to give the properties for Λ2 = [k] which involve the symmetrised Clebsch.

The symmetrised Clebsch-Gordan coefficients with the properties used in section 2 can be

obtained from the Clebsch-Gordans for ordinary tensor products V ⊗k
H . Consider states

|a1, a2 · · · ak〉 in the tensor product. The action on the tensor product is

σ|a1, . . . , ak〉 = DH
b1a1

(σ) · · ·DH
bkak

(σ)|b1, . . . , bk〉 (A.9)

This action of σ ∈ Sn commutes with Sk permutations which act as

α|a1, . . . , ak〉 = |aα(1), . . . , aα(k)〉 (A.10)

The symmetric subspace of V ⊗k
H is isomorphic to the space of k oscillators Aa1 · · ·Aak

. We

can identify Aa1 · · ·Aak
with

Psym|a1, . . . , ak〉 (A.11)

4 A minor notational point is that we are using the symbol C for Clebsch in this paper rather than S as

in [15] and [48].
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where the projector is Psym = 1
k!

∑

α∈Sk
α acting on V ⊗k

H . The usual Clebsch decomposition

gives the transformation matrix from the tensor product basis to a basis of irreps. |Λ1, i, τ〉

where τ is a multiplicity index and i is runs over the dimension dΛ1 . Since Psym commutes

with Sn , its eigenvalues are constant on irreps, and since it is a projector they are 1 or 0.

We can define the symmetric irreps Λ1, i to be the set left invariant by Psym. So we have

Psym|Λ1, i, τ〉 = |Λ1, i, τ〉 (A.12)

The Clebsch-Gordans restricted to the symmetric irreps are the symmetrised Clebsch-

Gordans

CΛ1,i,τ
a1···ak

≡ 〈Λ1, i, τ |a1 · · · ak〉

= 〈Λ1, i, τ |Psym|a1 · · · ak〉 (A.13)

If we permute the vectors in the tensor product we have

CΛ1,i,τ
aα(1)···aα(k)

= 〈Λ1, i, τ |Psymα|a1 · · · ak〉

= 〈Λ1, i, τ |Psym|a1 · · · ak〉

= CΛ1,i,τ
a1···ak

(A.14)

The α can be absorbed in the redefinition of the summation over permutations in Psym.

This gives the desired symmetry of the symmetrised Clebsch (2.29).

Orthogonality (2.31) follows from the restriction of the usual orthogonality to the

symmetric subspace. The identity (2.30) follows by considering

〈Λ1, i, τ |σ|b1, . . . , bk〉 = 〈Λ1, i, τ |Psymσ|b1, . . . , bk〉

= 〈Λ1, i, τ |σPsym|b1, . . . , bk〉 (A.15)

and inserting on the left of σ a complete set of tensor product states or on the right of σ

a complete set of symmetric irrep states.

A.4 Symmetrised Clebsch multiplicities

We give some examples of the symmetrised Clebsch multiplicities for VH = [n− 1, 1]. The

tensor product of VH ⊗VH is decomposed into irreps as [n]+[n−1, 1]+[n−2, 2]+[n−2, 12 ].

It can be checked that their dimensions add up to (n− 1)2 . If we drop the last we get the

dimensions adding to n(n−1)
2 as expected form the symmetric product. So we have

Sym(VH ⊗ VH) = [n] + [n− 1, 1] + [n− 2, 2] (A.16)

To get Sym(VH ⊗VH ⊗VH) we first take the above symmetric tensor product and then

a further tensor product with [n− 1, 1]. We need the tensor product

[n− 2, 2] ⊗ [n− 1, 1] = [n− 1, 1] + [n− 2, 2] + [n− 2, 1, 1] + [n− 3, 3] + [n− 3, 2, 1] (A.17)

The dimensions add correctly. Then we need to implement the symmetric projection. One

finds that the following gives the correct dimension counting

Sym(VH ⊗ VH ⊗ VH) = [n] + 2[n − 1, 1] + [n− 2, 2] + [n− 2, 1, 1] + [n− 3, 3] (A.18)

So the representation [n − 3, 2, 1] together with one of the two reps [n − 2, 1, 1], one of

the two reps [n − 2, 2], and one of the three reps [n − 1, 1] have been projected out from

Sym(VH ⊗ VH) ⊗ VH .
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B Action of Sn on A†
a

in detail

The orthogonal basis of A†
a which we used in section 2 has the property that Sn acts on it

via the standard Young-Yamanouchi orthogonal basis of the [n− 1, 1] hook representation

(as given for example in [48]). If si = (i, i + 1) are the 2-cycle permutations that generate

Sn then we have

siA
†
a = A†

a for i ≤ a− 1 and i ≥ a+ 2

si+1A
†
i =

1

i+ 1
A†

i +

√

i(i+ 2)

i+ 1
A†

i+1

si+1A
†
i+1 =

√

i(i+ 2)

i+ 1
A†

i −
1

i+ 1
A†

i+1 (B.1)

We can identify the representation of Sn formed by the Aa using general arguments.

It is easy to see that there is no invariant vector under Sn, and that there is one invariant

vector under Sn−1 (namely An−1). The only irreducible representations of Sn which contain

the invariant of Sn−1 are [n] and [n− 1, 1]. Having ruled out the symmetric irrep. [n], the

(n− 1) dimensional representation formed by the Aa can only be the irreducible [n− 1, 1].

More directly we can use the construction of the orthogonal representing matrices given

in [48], which uses branching arguments.

C Code

Code written to calculate the various multiplicities discussed here is available under the

GNU General Public Licence at http://www.nworbmot.org/code/. It is written in python

for use with the SAGE open source computer algebra system.
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